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FOREWORD

This document is one of sixteen sections that comprise the final
report prepared by the Minneapolis-Honeywell Regulator Company for the
National Aeronautics and Space Administration under contract NASw-563.
The report is issued in the following sixteen sections to facilitate
updating as progress warrants:

1541-TR 1

1541-TR 2

15L4L1-TR 3
1541-TR &4
1541-TR 5

1541-TR 6

1541-TR 7
1541-TR 8
1541-TR 9

1541-TR 10

1541-TR 11

1541-TR 12

1541-TR 13

1541-TR 1k

1541-TR 15

1541-TR 16

Summary

Control of Plants Whose Representation Contains Derivatives
of the Control Variable

Modes of Finite Response Time Control
A Sufficient Condition in Optimal Control
Time Optimal Control of Linear Recurrence Systems

Time-Optimal Bounded Phase Coordinate Control of ILinear
Racurrence Systems

Penalty Functions and Bounded Phase Coordinate Control
Linear Programming and Bounded Phase Coordinate Control
Time Optimal Control with Amplitude and Rate Limited Controls

A Concise Formulation of a Bounded Phase Coordinate Control
Problem as a Problem in the Calculus of Variations

A Note on System Truncation

State Determination for a Flexible Vehicle Without a Mode
Shape Requirement

An Application of the Quadratic Penalty Function Criterion
to the Determination of-a- Linear Control for a Flexible Vehicle

Minimum Disturbance Effects Control of ILinear Systems with
Linear Controllers

An Alternate Derivation and Interpretation of the Drift-Minimum
Principle T

A Minimax Control for a Plant Subjected to a Known Load Disturbance

Section 1 (lShl—TR 1) provides the motivation for the study efforts

and objectively discusses the significance of the results obtained.

The

results of inconclusive and/or unsuccessful investigations are presented.
Linear programming is reviewed in detail adequate for sections 6, 8, and 16.

It is shown in section 2 that the purely formal procedure for synthe-
sizing an optimum bang-bang controller for a plant whose representation
contains derivatives of the control variable yields a correct result.
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In section 3 it is shown that the problem of controlling m components
(1 <m < n), of the state vector for an n-th order linear constant coefficient
plant, to zero in finite time can be reformilated as a problem of controlling
a single component.

Section 4 shows Pontriagirn's Maximum Principle is often a sufficient
condition for optimal control of linear plants.

Section 5 develops an algorithm for computing the time optimal control
functions for plants represented by linear recurrence equations. Steering
may be to convex target sets defined by quadratic forms.

In section 6 it is shown that linear inequality phase constraints
can be transformed into similar constraints on the control variables.
Methods for finding controls are discussed. -

Existence of and approximations to optimal bounded phase coordinate
controls by use of penalty functions are discussed in section 7.

In section 8 a maximum principle is proven for time-optimal control
with bounded phase constraints. An existence theorem is proven. The
problem solution is reduced to linear programming.

A backing-out-of-the-origin procedure for obtaining trajectories for
time-optimal control with amplitude and rate limited control variables is
presented in section 9.

Section 10 presents a reformlation of a time-optimal bounded phase
coordinate problem into a standard calculus of variations problem.

A mathematical method for assessing the approximation of a system by
a lower order representation is presented in section 11.

Section 12 presents a method for determination of the state of a
flexible vehicle that does not require mode shape information.

The quadratic penalty function criterion is applied in section 13 to
develop a linear control law for a flexible rocket booster.

In section 14 a method for feedback control synthesis for minimum load
disturbance effects is derived. Examples are presented.

Section 15 shows that a linear fixed gain controller for a linear
constant coefficient plant may yield a certain type of invariance to
disturbances. Conditions for obtaining such invariance are derived using
the concept of complete controllebility. The drift minimum condition is
obtained as a specific example.

In section 16 linear programming is used to determine a control function
that minimizes the effects of a known load disturbance.
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A MINIMAX CONTROL FOR A PLANT
SUBJECTED TO A KNOWN LOAD DISTURBANCE*

By H. E. Gonwitze_ri

/5‘757 ABSTRACT /\‘

An open-loop optimal control problem 1s considered for
plants that can be represented by linear recurrence equations.

It is assumed that the control is bounded and that a known
disturbance is present. Then the problem is to choose a control
sequence that minimizes an error criterion based on a generallzed
distance function.

The problem is formulated in a manner such that llnear
programming techniques can be used to give the optimal control
sequence. Estimates on the size of the resulting linear
programming‘problem are presented.

A method is cited for determining an optimal control
sequence as a result of varylng a nominal’disturbance provided
the optimal control is known for the nominal case,

An example is presented to 1lluStrate the techniques
R_dT"ff)ﬁ

involved,

INTRODUCTION
An open loop optimal control problem is considered for
plants that can be represented by linear recurrence equations

of the form:

- - - ——— y — — - T wm -

* Prepared under contract NASw-563 for the NASA
¥ Assoclate Research Scientist, Minneapolis-Honeywell Reg. Co.,
Minneapolis, Minnesota
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x(r+l) = A(r) x(r) + B(r) u(r) + g(r) (1)

where x(0) = Xy T = 0,1,...,4-1; x(r) is an n-vector; g(r) a
known bounded n-vector; and u(r) an m-vector whose components
are bounded in absolute value by one. A(r) and B(r) are
bounded matrices with det(A(r)) # 0. |

The object 18 to choose a control sequence{ﬁ(r)} that
satlisfy the constraints and minimize

C(u) = max max Ix. (r; u, g)l (2)
181¢n 1<pgy 17 77 R

where xi(r; u, g) denotes the ith component of a solution to (1).

The representation of a solution to (1) allows the problem
to be solved as one of linear programming and estimates on the
slze of the resulting linear program are presented.

A method using iinear programming techniques is cited that
glves new optimal controls as a function of changes in the |
function g(r) if an optimal solution is known.

A solution for a particular example is presented to illustrate

the techniques involved.

ANALYSIS

The statement of the problem 1s developed and 1s inter-
preted as one of 1in¢ar programming. Estimates on the slze of
the resulting linear brogram are developed.

The variation of parameters form of a solution to (1) is

glven by
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x(rswg) = Smix, + 2 o) 07(3) [B(3-1u(3-) + 8311 (3)

where r = 1,2,..., A and ¢(r) = A(r-1) A(r-2) ... A(0)
(reference 1). Let z be a nonnegative scalar variable such
that Exi(r;u,g)l <2, r=1,2,00., L, 1=1,...,n. Then an
optimal sequence %u(r{§ that minimizes C(u) is found by

minimizing z subject to

Ix, (rsu,g] £ 2

(4)
N B!

for r = 1,2,.0., £y 1 = 1,.005n, § = Oslyeaes =1y, k= 1,,..,m,
This 1g a consequence of the manner in which the non-negative
scalar variable z was introduced.

Since each component for each stage of (3) defines a
hyperplane with respect to ui(J-l) where ui(J-l) denotes the 1th
component of the m-vector u(j-1), the problem can be stated as
an equivalent linear programming problem. Since Ial <b implies

a f b and a Z—b, the problem can be stated as the linear programming

problem: minimize z subject to

!
N

x; (rsu,g) <

v

xi(r;u,g) ~-Z (5)
u¥(3) <1 o
u¥(J) > -1

for v = 1,2,.0e5 8y 3 = 0,1,2,.0., =1, k=1,..0,m, 1 = 1,...,n

where xi(r;u;g) is given by (3). This problem can now be solved
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by standard techniques in linear programming (reference 2).

ESTIMATES ON THE SIZE OF THE LINEAR PROGRAM

Although the linear programming problem (5) can be solved
by standard methods it is not in a standard form so that these
methods can be directly applied. Let A be a pxq matrix, y a
g-vector, ¢ a g-vector.and b a p-vector. A canonical maximum
or minimum linear programming problem is that of finding

Yy Z 0, 1 =1,...p that maximize or minimize cy subject to

Ay = b (6)
where cy denotes the inner product of ¢ and y.

In order that standard methods such as the simplex method
can be used in solving a linear programming problem, the problem
must be reduced to an equivalent canonical problem. The problem
(5) can be reduced to an equivalent canonical problem in various
ways. New non-negative variables can be introduced in the
2 £ (m+n) inequalities of (5) so that equality always holds and
each of the uk(J) can be represented as the difference of two
non-negative variables (reference 2). If this is done the
problem will be in a canonical form and a technique such as
the simplex methods can be directly applied. In the equivalent
canonical problem of (5) let N1 be the number of equations and
Na‘be the number of non-negative variables. Then depending on

the specific problem
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24 (n+3) $ N, € 24 (n+m)

(7)

I

A(2n+3m)+1 <N

5 2 £ (n+2m)+1

where {, n, m are defined in (1).
A PERTURBATION METHOD

A method is cited that allows one to calculate a new
optimal control as a function of specified variations in the
function g(r) of (1) if an optimal solution using g(r) is known.

As stated before the problem (5) must be reduced to the
equivalent canonical linear programming problem of minimizing cy

subject to

Ay:b yi?_o,i=1’uoe’p (8)

before solution methods can be applied. A direct examination

of (5) will show that g(r) will be found in the vector b of (8).
There are methods of determining changes in the optimal solution
of (8) if the components of b are allowed to vary in a prescribed
manner from a nominal choice. These methods go under the
titles of sensitivity analysis and parametric linear programming
(reference 3). These methods are advantageous because there is
less work involved in using these methods than to calculate a

new optimal control for each choice of g(r).

A SAMPLE PROBLEM

The system of recurrence equations considered is the one

assoclated with the second order differential equation



=
x(t) = u(t) + g(t) (9)

I 2 X and i 2 X5 the system of recurrence equations in

vector notation is

1-1\—2
[xl(rﬂ-l)} _ [l T] l:xl(r)] +[ 2 j][u(r) + g(r)], (10)
, 0 1 T ‘

xe(r+l) xe(r)

A X10
With X(O) = and r = 0,1,0..

X20
T is a parameter which is analogous to a sampling interval if

t 1s a time parameter. The solution to (10) is given by

(reference 1)

xl(r) 1 ;T X109 r (%-+ r - J)r2
= + L . (u(3-1)+8@ -1)]

xa(r) o 1 X50 J=1
(11)

The recurrence equation leads to the following problem: given

x(r+1) = A(r)x(r) + blu(r)+g(r)], r = 1,2,.,,,19i,x(0) = 03 (12)
2
fu(r)] < 1, g(r) specified r = 0,1,..., KR -1, where
, , 2
1 7 —
A(r) = and b =| 2 then find u(J), J = 0,1,..., £-1
o 1 T
satisfying (12) that minimize C(u) where
C(u) = max max in(r;u,g)l (13)

18182 15089

and xi(r;u,g) denotes the ith component of a solution to (12).
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Three cases wlll be considered and each will in effect be
a different representation of (9) over the interval 0 S t S 3.
The disturbunce function is taken to have the same profile in

time for each case considered.

THE FIRST APPROXIMATION
Let T =1, A= 3 and let g(J) be specified as follows;
g(0) =2, g(1) = -2, g(2) = 2. Then from (11)

x,(1) = £ u(0) + 1

x5(1) = u(0) + 2

x1(2) = 2 u(0) +  u(1) +2

x5(2) = u(0) + u(1)

x1(3) = 2 u(0) + 3 u(1) + Fu(2) +3
%5(3) = u(0) + u(1) +u(2) + 2

The optimum sequence, according to the methods developed,

1s found by minimizing z, z 2 O subject to

(14)



-é—‘u(C-) 1% 7
% u(0) +12 -2
u(0) +2°%z
u(0) +22 2z
2 u(0) + % u(1) +2 5z
%-u(o) + %-u(l) +22 -z
u(0) + u(1) <z

u(o) + u(1) 2 -z
2u(0) + 2 u(1) + Fu(2) + 35z
gu(0)+%u(l)+%—u(2)+32z

u(0) + u(l) + u(2)+2°%z

u(o) + u(i) + u(2)+22 -z

u(0) <1

u(0) 2 -z

u(1) <1
u(1) 2 -1
u(2) S 1
u(2) 2 -1

This problem is one of linear programming and can be solved
by standard techniques. An optimum sequence of u(Jj), J = 0,1,2
along with x'(r), x°(r) and g(r) 1s illustrated in Fig. 1.



THE SECOND APPROXIMATION
Let T = %-and<Z= 6. The results for this case are found

- simllarily and are illustrated in Figure 2.

THE THIRD APPROXIMATION
Let T = % and £ = 9. The results for this case are found

similarily and are illustrated in Figure 3.

CONCLUSIONS
An open-loop optimal control problem for plants that can
be represented by linear recurrence equations is solved using
linear programming techniques. The example illustrates the
techniques used. The resulting linear programming problem gets
very large if the system 1s of high order and if a large number
of stages are considered. This might ultimately restrict the

use of digital computers in obtaining a solution.
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Results of the Second Approximation
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Results of the Third Approximation




